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Abstract —A new model of the progressive crushing of circular tubes is developed in which an active
zone ot plastic deformations contains two folds or buckles. The model captures, with great realism,
several features of the crushing process which were unaccounted for in all previous computational
madels of progressive folding. These include: finite values of the load peaks, alternating heights of
the peaks, uncqual distances between peaks, reduced crush distance, realistic final shape of crushed
tubes and a longer distance between the two first peaks.

Closed-form solutions, derived for the length of the plastic folding wave and the mean crushing
force, show very good agreement with experimental results, The history of the crushing foree is
shown to depend on the cecentricity parameter, i.¢. on the way the tube material folds with respect
to the original tube riddius, However, the mean crushing foree is found to be independent of the
eecentricity parameter,

I. INTRODUCTION

Thin walled prismatic columns made of a ductile material, when subjected to an axial load,
collapse either in symmetrical buckles (such as concertina modes in thick tubes) or in a
non-symmetric (diamond) pattern. A typical force-axial displacement characteristic of a
column is shown in Fig. |. Apart from the initial peak, which is governed by elastic-plastic
buckling, the load-displacement behavior exhibits a repeated pattern. Each pair of peaks
is associated with the development of one full wrinkle or buckle. Usually, the buckles
develop scquentially from one end of the tube so that the phenomenon is known as
progressive crushing. Furthermore, except for very thick tubes, there is an alternating
pattern of higher and lower peaks. Each point on the load-deflection diagram corresponds
to a certain stage of the folding process. The area under the curve between two points
representing one complete deformation cycle d.¢ is proportional to the so-called mean
crushing force P,,.

Early theorctical work on the plastic collapse of tubes and columns (Alexander, 1960,
Pugsley and Macaulay, 1960 ; Pugsley, 1979 Soden er al., 1974) was based on the final,
deformed shape of the crushed structures without considering the effect of the loading
paths. A closc examination of instantancous deformed shapes of tubes reveals that crushing
is a continuous process and that the matcerial constantly flows in and out of the plastically
deforming zone. The correspondence between the changing geometry of the collapsing tube
and the resulting crushing force was studied experimentally by, among others, Johnson et
al. (1977) and more recently by Jones (1989). Although a number of interesting observations
were made, no modifications to the generally accepted computational model of the shell
were suggested.
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Fig. 1. Experimental static axial load versus crushing distance showing unequal magnitude of load
peaks and unequal distance between subsequent peaks.

Meanwhile, w different direction of rescarch was pursued by the present authors. Rather
than continuing with experimentation in which it is difficult to control the local processes
ol folding, internal contacts, cte., a specialized computer graphics program, called VISTA,
was developed to illustrate a column during any stage of progressive crushing (Brodkin,
1988). VISTA translates the basic Kinematic assumptions of the individual folding mech-
anisms into precise visual images, We have used VISTA to critically assess the assumptions
underlying existing crash models and test alternative sequences of folding modes.

This research has led to the development of a new computational model of progressive
crushing of prismatic columns and cylinders based on the assumption that an active crush
zone (or transition zonc) comprises two folding waves. This model eliminates all the
drawbacks of the cxisting models and is capable of reproducing qualitatively and quan-
titatively the main features of the experimental load-deflection diagram, as shown in Fig.
1. Among these features is the finite magnitude of the local peaks, the alternating character
of the lower and higher peaks and a realistic final shape of the deformed tube.

The new modceling concept is quite general and applies to rectangular and square
prismatic columns as well as circular tubes. However, for the sake of illustration and
derivation of simple closed-form solutions. we chose in the present paper a circular tube
collapsing in an axisymmetric or concertina mode (see Fig. 2). This brings us to the famous
work by Alexander.

2. LIMITATIONS OI' ALEXANDER'S SOLUTION

A first theoretical analysis of the plastic collapse of a cylindrical shell under axial toad
was presented by Alexander (1960). He derived a simple cxpression for the mean crushing
force and the length of the plastic folding wave by considering two separate plastic dis-
sipation mechanisms : axial bending in concentrated hinge lines and circumferential stretch-
ing of the shell material between the hinge lines. The main kinematic assumption made
by Alexander was that one fold was formed at a time. It was further assumed that a
given element goes through the entire crushing process before its neighbor begins to deform.
After the element is crushed, the tube returns to its ultimate compressive capacity at the
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Fig. 2. Photograph showing the axissmmetric (or concertina) deformation made in a partially

crushed tube.



nmn T WIERZBIKE ef .

(G (bi

—

Fig. 4. fmages generaied by VISTA demonsirate the crushing of the two-clemiont transition sone
model in the satire prispuiic tube,



Alexander revisited 3273

P SE clement

Vo

Fig. 3. Basic requirements of a transition zone between an already crushed and an undeformed part
of the tube.

end of cach cycle; a characteristic which is not obscrved experimentally. Furthecrmore, in
the model with stationary plastic hinges, a cylindrical shell is deformed into a system of flat
annular discs meaning that the entire length of the tube is available for crushing. This result
is grossly inaccurate for a plastic work hardening material and gives an unrcalistic final
shape of the tube. Also, the amount of encrgy absorbed per unit crush distance or per onc
fold was underestimated in Alexander's sofution by some 40%.

Despitc its various limitations, the assumption that one folding wave forms at a time
has remained unchallenged until the present time. Alexander’s formulation, with only minor
modification (Abramowicz and Jones, 1986), has formed the basis for crush calculations
for over 30 years. A comparison of various existing calculation methods was recently
presented by Grzebieta and Murray (1989). The approach developed for circular tubes was
later extended to rectangular tubes (Abramowicz and Wierzbicki, 1989).

Wierzbicki and Bhat (1986) modified Alexander's solution and replaced stationary
plastic hinges with moving hinges. This led to a realistic deformed shape and improved
prediction of the mean crushing force. However, because the main simplifying assumption
that one folding wave forms at a time remained unchanged, the modified model retainced
the unrealistic features of Alexander’s solution.

The original analysis developed by Alexander was motivated by a specific need for
predicting energy absorption of tubes subjected to dropped objects in nuclcar reactor
applications. Interestingly, much of the current industrial research effort is driven by similar
practical needs (Magee and Thornton, 1978 ; Mahmood et al., 1986). An enormous amount
of empirical knowledge has been accumulated to date on the strength and energy absorption
of tubes in terms of gecometry, matcrial properties and loading conditions (Joncs, 1989).
Parallel to experimental efforts, several specialized FE codes for crashworthiness appli-
cations such as PAM-CRASH (Haug er al., 1986) and DYNA-3D (Hallquist and Benson,
1986) can now reproduce with some realism the actual crushing process.

Despite all these advances, a full understanding of the physics of the problem is lacking
or lags behind practical applications. Alexander proposed a simple technique for estimating
the global parameters of the crushing process such as a mean crushing force and the energy
absorbed by compressed members. The present paper makes a further important step in
this direction by providing a basis for reproducing the entire crushing process of thin-walled
columns under compressive loading.

SAS 29:24-M
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Fig. 4. Undeformed, partially deformed and fully crushed individual superfolding element.

3. MODELING THE TRANSITION ZONE

In this section, we present the basic concept of the Superfolding Element (SE) and the
transition zone model. Consider a cross-section of a circular tube of initial radius R, and
thickness ¢ collapsing in the axisymmetric or concertina model. [t is assumed that the
crushed part of the tube is composed of alternating, densely packed circles. The undeformed
part of the tube is straight. Figure 3 illustrates the basic requirements of the transition
zone of plastic deformation between the denscly packed circles and straight tube in our
simplified representation. We must connect point A of the already crushed tube with point
B of the undeformed zone. Point A is assumed to move vertically with a constant velocity
to simulate the crushing process. Point B is stationary until a new contact between the lobes
occurs. Qur task is accomplished in three steps.

First, we identify a representative clement of the crushed zone from which the entire
deformed tube can be assembled by translation, rotation and mirror reflection. Such an
clement, referred to as a Superfolding Element, ts isolated from the tube by two horizontal
cuts shown in Fig. 4. Thus, symmetry rather than boundary conditions are used to generate
the SE. This represents a radical departure from the current practice of developing simplified
models for crushing,.

In the sccond step we represent the various deformation stages of the SE by varying
an angle a (Fig. 4). Note that the length ol the SE is constant and cqual to 2H. The span,
the height and the circular are radit of the SE are uniquely determined by x and 2H.

Finally, it is observed that the kinematic requirements of the transition zone are
satisficd by two SEs. Thus, a transition zone can be formed in a unique and elegant way
by connecting two “S™ curves (Superfolding Elements) in series.

Figure 5 demonstrates the crushing of the two-clement model in our new representation.
Note that after element | is completely crushed so that touching occurs, the transition zone
shifts downward by onc SE and the process is repreated with participating elements 2 and

[

<

Fig. 5. Subsequent deformation stages of the two-clement model.
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Fig. 6. A transition zone consisting of two superfolding elements.

3. The two element transition zone is relatively simple and represents the geometry of actual
columns quite closely. An additional unique feature of the assumed kinematics is that the
amount of insidc and outside folding does not have to be the same, as explained in the next
two scctions. Before the present model is used to predict the load-shortening characteristics
of the crushed tube, a simplified version of this modcl will be analysed to highlight some
important features of the modeling concept.

4. MODEL WITH STATIONARY HINGES

Consider first a model of the transition zone consisting of two straight clements of
length 24 cach. The elements are connected by stationary plastic hinges. Note that straight
segments in the cross-sectional plane correspond in reality to truncated cones while plastic
hinges are in fact circular hinge lines (Fig. 6). Experiments show that the material folds to
both sides of the original radius of the cylinder., The eccentricity of the folding process is
convenicntly described by the parameter m. For m = 0.5 the folds extend the same distance
on both sides of the initial radius. A fully external folding corresponds to m = 0 while an
internal folding is obtained by sctting m = 1. The wavelength # is an unknown parameter
which will be found in the course of the analysis. At the same time, the eccentricity parameter
must be assumed.

Geometry
It is convenient to take as a reference configuration an inclination angle of the first
element 2, (ABC) such that the next element (CD) is positioned vertically. The eccentricity
parameter is related to the angle a4 by
cos ay = m, (1)
Throughout the folding process, the inclination of the first deforming element, ABC, with
respect to the horizontal is denoted by a. The second element CD is inclined by the angle
f. From the gcometry of the problem, the angles « and f§ are related by
cos f = cos a—cos ay, )
and their rates obey

B = sin [l — (cos a—cos «,)*] ™ ""*4. (3)

Therefore, the present two-element folding mechanism represents a one-degree-of-freedom
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system with x as a process parameter. The shortening of the column §, measured from the
reference position can be calculated from (see Fig. 6)

0 = 2H(1 +sin 2, —sin x—sin f), 4
and its rate is related to & by
d = —2H[d cos 2+ f cos f]. %)

Bending energy
The rate of bending energy, E,, is defined by

Eb = ZanOMOIé}il' (6)

where M, = 1/4a,h? is the fully plastic bending moment per unit length and o, is a flow
stress of the material. The relative rate of rotation in the ith plastic hinge is denoted by 4..

In the present two-fold model there are three active hinge circles at any time. The
relative rates of rotation at these hinges are:

d| = d,
0, = a+p,
0, =—4. N

The rate of bending cnergy in the tube becomes
E, = 4nRyM,(la| +1B)). (8

The bending energy is obtained by integrating E, with respect to time over the duration of
the folding cycle 0—:

{

)

The total folding cycle corresponds to a crush distance of 4. During the first half of the
cycle the angle « changes from a, to 0, until touching of the first element occurs. During
the second half of the cycle the angle f# changes from f, to 0. Now, consider the first half
cycle and replace the integration with respect to time by integration with respect to the
rotation angle «:

0
El =J‘ E, da. (10)
Substituting eqn (8) into eqn (10) and performing calculations one gets

E\ = 4nR,M, [g +cos™ ' m—cos~' (l—nx)]. an

During the next half cycle m becomes | —m. Therefore,
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n

ELI = 4ﬂRoM° [2

+cos™! (1 —m)—cos™! m:l. 12

The total bending energy over the crush distance of 4 is
E, = L+ E!' = 4n*M,R,. (13)
Thus, E, is seen to be independent of the parameter m.

Membrane energy
The membrane energy results from compression or extension of a shell element in the
hoop direction

E, =I|Noé,,g| ds, (14)
AY

where Ny = gy is the fully plastic membrane force per unit length. Note that no interaction
is assumed between bending moment and membrane force. The circumferential strain rate
is defined as

W
Egg = ‘R—‘ (15)

0

wherce w is the radial velocity of material points. The contribution of the axial components
to the rate of membrane energy vanishes in view of the assumed inextensibility of the shell
clements (£,, = 0) and the shearing strain rate is zero because the problem is axisymmetric.
The integration in egn (14) is performed over the active zone of plastic deformation,
dsp = 2nR, ds. Thus

0

E,= 21:R0N0J

ABCD

ds, (16)

where s is the coordinate measured along the deforming element ABCD (see Fig. 6). The
expressions for w(s) and w(s) in the deforming regions are given in Appendix A. Introducing
eqn (Al) into eqn (10) and integrating over the length parameter S in the first half of the
cycle, one gets

El = —~8aN,H? sin a d. a7

Note that in the first half of the loading cycle w(s) > 0 and &(s) > 0. Thus, all n}atcrial
points are subjected to tension. The membrane energy is obtained by integrating £, with
respect to time:

t ]
E;, =j E}, dt=J El (a) da. (18)

Introducing eqn (17) into eqn (18), the membrane energy over the first half cycle is
E! = 8aN,H* (1 —m). (19)

In the second half cycle, all material points are moving inwards, meaning compressive
loading. The membrane energy is obtained by replacing (1 —m) by m:
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En = 8aNH*m. (20)
Thus. the total membrane energy over the entire loading cycle of the length 4H is
E, = EL+EL = 8nN,H*. 20
The mean crushing force P, is defined by the global energy balance
P.4H = E +E,. (22)
Substituting eqns (13) and (21) into eqn (22). the normalized mean crushing force becomes

P 87 n°R
Po _8n, 1R ,
M, W H (23)

Following Alexander, it is postulated that the half length of the folding wave adjusts itself
$0 as to minimize the mean crushing force. Indeed, an analytical minimum of the right-
hand side of eqn (23) with respect to H exists and occurs at

H_\/r_r /h‘~0886\/T ”
R, V4V2R, T 2R, (24)

Further justification of the minimum condition can be found in Jones (1989). Substituting
the above result buck into egn (23), the optimum value for the mean crushing forcee is given
by the following expression :

P 2R IR,
L R 22.27\/ﬁ 2, 2
M, g \/ h — h (23)

The above solution compares favorably with a similar formula derived by Alexander in
which the numerical cocflicient was 20.73.

The main conclusion from that part of the analysis is that the mean crushing force
doces not depend on the eccentricity parameter m. Furthermore, there is a strain reversal
during the complete loading cycle.

The load-shortening behavior
The instantancous equilibrium of the tube in the transition zone can be represented by
the principle of virtual velocities :

Pd=E,+E,. (26)

Using eqns (8), (5), (18), (24) and (25), the normalized instantaneous crushing force in the
first half of the cycle can be recast in the form:

P
_P(}l = fi(x, m)+f2(a, m), (27

where the functions /| and f, arc defined in Appendix A. In the second half of the cycle
the same formulae would apply with m replaced by (I —m). Of particular interest are
peak values of the crushing force which occur at the instant of touching, i.e. where
cos 2 = €o0s %, = m and cos « = | —m. Equation (27) is then reduced to
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Y

P 1+ l—m Jl-m?
= +

) m m

(28)

for the first peak. The subsequent peak is obtained by replacing m with (1 —m). In the case
of symmetric folding m = 0.5 and the normalized first and second peaks are of the same
magnitude :

— =292, (29)

This so-called ““corner load™ is usually smaller than the initial peak load of the cylindrical
shell. For an eccentric folding with m = 0.25 or m = 0.75, the normalized force alternates
between two corner values:

P P
5 =637 and 5 =159 (30)

m m

A minimum value of the instantancous force is reached just before touching, i.e. when
a = 0. From eqns (27) and (A1) the normalized minimum crushing force is

r |
(Pm)""“ = n = 03l (3')

A sketeh of the load -deflection relationship for the two cases discussed above is shown in
Fig. 7. Alter a corner load is reached, the crushing force decreases monotonically to the
minimum value until the next touching occurs, and so on.

Also shown in Fig. 7 is the load deflection relationship for i = 0 which is the special
case corresponding to the Alexander model. It can be observed from Fig. 7 that the present
model with a non-zero value of the eccentricity parameter m predicts twice the number of
peaks when compared to the Alexander model or any other model proposed to date (for
the same crush distance). The presence of intermediate peaks is confirmed by experimental
observation (see Fig. 1).

The present model with finite alternating peaks is certainly much better than any other
model proposed to date. However, the effective crush distance, the average crushing force
and the shape of the curved crushed tobes are not satisfactorily captured in the above simple
model. Also, the stiffening phase near the touching point is too abrupt.

m ¥
: !
'\m-o .
6t E: 1
S |
L3 '
m !
% L
4
m=0.5
'\ m20.25 or 0.75
2 I \ /
= e e
o
! 2 /8411 3

Fig. 7. A load -displacement diagram of a straight-element model for three values of the cccentricity
parameter.
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Fig. 8. A geometry of the transition zone with two curved superfolding elements.

5. MODEL WITH CONTINUOUS DEFORMATIONS

More accurate predictions of the mean crushing force, the length of the folding wave
and the effective crush distance will be obtained by considering the model of the transition
zong, consisting of two 8" shape SEs, introduced in Scction 3. The concept of the folding
of two curved ¢lements is the same as in the previously considered case with straight
clements. However, the geometry of the problem is far more complex. Therefore, only the
muin results are stated and the bulk of calculations is moved to Appendix B.

Geometry

An instantancous geometry of the transition zone is shown in Fig. 8. The shape and
instantancous position of the SE is uniquely determined by the instantancous radii ry, r,
oranglesa and ff:

Furthermore, for a given eccentricity 4, or the dimensionless eccentricity parameter m, the
angles x and f are uniquely related :

2H 2H
N === (1=cos 2) ~ == (I —cos fy), (32

B
similarly to the previously considered case. The dimensionless parameter m is defined by
n= i”I("Rmxt - Rm )w (33)

where R, and R, arc defined in Fig. 9 showing one fully collapsed SE of length 2H. From
Fig. 9 onc can calculate

a_Sn
{f 69
H
re = —,
Ay

Row— Ry = 2r¢ ( 1+ X2 34)



Alexander revisited 3281

Rout

-4
. ﬂf ja ¢ } Rin

cecsecacrceal e n e e e

Fig. 9. Parameters, defining a fully crushed superfolding clement.

Using eqns (33) and (34) the relation between « and ff can be expressed in terms of the
dimensionless eccentricity parameter m ;

2 3 — COS —cos f
23 _I=cosa T—cos

0. 35

Sn b f (35)
A relation between the rates of the angles is obtained by differentiating egn (36) with respect
to time (sce Appendix B). In order to calculate bending and membrane cnergics, it is
necessary to determine the limits of variation of the angles x and f# over the full folding
cycle. These limits are:

b (36)

amiu('") = ﬂl(l _,")‘ (37)

The relationship between the maximum values of angles is obtained from eqn (35) by
setting & = o = 51/6 and f# = fi;. The calculated valtues of fi; for three different eccentricity
parameters are given in the table below:

m 0.25 0.50 0.75
B 1.209 0.747 0.360

Finally, the shortening of the column at any value of the process parameter, 2, is

. o
5=5.+¢sz=2n[2-’3-';°‘-—?‘!-';/-]. (38)

An expression for the rate of change of §, d, is given in Appendix B. The effective crush
distance is defined as d. = d;— 0, over the complete cycle, i.c.

6:(1‘ = (6f_6|ni)m + (‘Sf—‘smi) t—m- (39)

It can be shown that in the case of symmetric folding. m = 0.5:
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‘)‘cﬂ' 3

The above results can also be obtained in a more straightforward manner by considering
the geometry of the fully crushed column. to be represented by a system of densely packed
alternating circles (Wierzbicki, 1990).

Bending energy
The SEs in the transition zone undergo continuous bending with a curvature K = ljr
increasing from zero to the final value K, = 1/r;. The rate of bending energy is defined as

E, = f |MK|2nR, ds. (41)
ABCDE

where the rate of curvature of the S elements are:

Element ABC A = — r~l =
. P
Element CDE A= - <=1, (42)
ri H

Because the curvature rate is constant along cach clement, the integration in cyn (41) can
be readily performed to give

Ey = 4nR M (13 + ) = 4nR M E,,, (43)

where £y is a dimensionless bending rate of encrgy. Note a similarity between the above
expression and the corresponding formula derived for the simplified model [eqn (8)].

Membrane encergy
The membrane encrgy is defined by eqn (14), where the hoop strain rate is defined as

R )
Ly = ~ .

w= R {
The expressions for R are different for each half of the SE and are given in Appendix B.
Here R denotes the current position of a material point in the trunsition zone from the axis
of the tube. The total rate of membrane energy can be represented in the form

E, = 2no hHE, . (45)

where the dimensionless rate of the membrane encrgy £, is calculated in Appendix B. Now,
the instantancous crushing force can be calculated from eqn (26). Substituting the equations

for 3, E, and E,, the expression for the normalized crushing force takes the form:

P H 2R, R,
A P1(2) R i +p2(2) T (46)

where the functions p, and p, are defined in Appendix B. The above solution involves a
still unknown length of the folding wave H. As in the previously considered model, the
unknown H will be determined from the minimum condition
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dp,
90 = 0, 47
where
!
Py=— J‘ Pé dx. (48)
‘scﬂ' ABCDE

Substituting eqn (40) into eqn (48). the formula for the normalized mean crushing force
can be recast into the form

P, 2Ry H R,
P| PZH

— = 4
M, h R, “9)

where the coefficients P, and P,, defined in Appendix B, do not depend on the eccentricity
parameter n1.
The formula for the wavelength, calculated for the optimality condition is

H h [P,
R NI B eo
Substituting eqn (50) into eqn (49), the expression for the mean crushing force becomes

‘m 2R()
Lo /_-- PP 5t
M, \/ * ( )

A small computer program was written to calculate the coefficients in the above two
expressions and the results are:

H h
=15 (52)
P. 2R,

AN et (53)

Substituting eqns (50) and (51) into eqn (46), the final expression for the instantaneous
crushing force, normalized with respect to the mean crushing force, takes the form:

P(x)

_ln@
P. 2 P,

1 pa(a)
Al 54
2 P, (54)
Therefore, the dimensionless force history in the present solution is independent of the
radius to thickness ratio of the shell and depends only on the eccentricity parameter.

6. DISCUSSION AND COMPARISON WITH EXPERIMENTS

Apart from numerical coefficients, the solution for H/R, and P,/M, for the models
with straight and curved lobes is similar. The magnitude of the coefficients is approximately
40% higher in the solution with curved lobes, which corresponds more closely to reality. A
comparison of the theoretical mean crushing force [eqn (53)] with experimental data for
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Fig. 10. Comparison of experimentally measured mean crushing force with prediction of various
theories.

mild steel tubes (Abramowicz, 1990) is presented in Fig. 10 showing very good agreement.
In bringing the experimentally measured force to the dimensionless form, the Row stress o,
was assumed to be equal to 92% of the ultimate stress of the material. This was obtained
by calculating the mean stress in the strain range of interest.

The force history for three values of the eccentricity parameter m = 0.25, 0.5, 0.75 is
plotted in Fig. 11 taking as an independent variable the normalized axial shortening of the
tubes. Compared to the solution based on the simplified model. two features should be
pointed out. The stiffening phase ts now more gradual. The total loading cycle is shorter
and equal to d . = 0.81(44/) rather than 4H. Also, the position of the intermediate peak
shifts, depending on m. In the case m = 0.5, the folding is symmetric in the sense that all
peaks are cqual in magnitude and cqually distanced from cach other. For m = 0.25, or
m = 0.75, the distances between subsequent peaks alternate even though the lengths of two
SEs in the active transition zones are the same. An experimental foree -deflection curve
confirms all of the above features of the present theoretical solution (see Fig. 1), The
dimensioniess crushing force fluctuates between the extreme values 0.45 < P/P, < 3.1 in
the case of symmetric folding. In the simpler, lincar model, the variation was in the range
0.31 £ P[P, <2.92. Unsymmetric folding, corresponding to m = (.25 exhibits a rather
large spread tn the alternating peak loads 1.71-6.74. Such a large difference is not observed
experimentally. This discrepancy can be attributed to a number of tuctors. First, the work
hardening of the material as well as lateral crushing of the newly-formed lobe will smooth
out a transition from the stiffening to the softening phase. Secondly, there will be some out-
of-plane deformation of the shell caused by initial elastic-plastic buckling so that progressive
folding proceeds in an imperfect shell. Finally, three or even four active folding clements
could form a transition zone and the resulting deformation could reduce sharp force spikes.

1 2 8/datt 3

Fig. 11. Force-displacement history of a curved element model. Note a gradual stiffening phase and
uncqual magnitude and position of subsequent peaks.
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Note that a cut-off value at a squash load has not been introduced in Fig. 11. The squash
load is understood as the yield stress times the cross-sectional area.

The only feature of the solution that cannot be predicted by the present computational
model is the amount of eccentricity. Experimental observation suggests that relatively thick
tubes fold more outside their initial radius than inside (Grzebieta and Murray, 1989). At
the same time thinner cylinders as well as prismatic columns fold in a more or less symmetric
fashion. The fact that the mean crushing force does not depend on the eccentricity par-
ameters suggests that the dependence of the load history on m should be rather weak.
Therefore. a collection of second order effects could be responsible for any specific folding
pattern. One important factor is the definition of hoop strain and strain rate. In eqn (44)
an engineering definition was adopted for simplicity. In a more rigorous approach. the
velocity R should be referred to the current thin initial tube radius

.

Em =

R (59)
According to eqn (55), folding “in"" (R < R,) would produce larger strain rates than folding
“out™ (R > R,). Also, large strains present in the present problems will produce a large
thickness variation. Inside lobes, subjected to compression, will be appeciably thicker than
outside lobes that are subjected to tension. Accordingly, the bending resistance of outer and
inncr lobes would differ favoring predominantly outside folding. Also, the finite thickness of
the shell was not included in building up the geomctry of the problem and establishing
conditions for touching. The latter effect could be incorporated relatively easily into the
theory (Wicrzbicki and Bhat, 1986). while two former ones will complicate the mathematics
rendering it analytically untractable.

7. EFFECT OF STRAIN REVERSAL AND STRAIN-HARDENING

An interesting property of the phenomenon of progressive folding is that any material
point of the shell undergoes a complex loading history involving tension and compression.
The effect of strain reversal is thus accounted for by the present theory, We shall explain it
using the model with stationary hinges. Consider the material point such as B in Fig. 6.
This point has already moved inside the tube and has undergone a certain amount of
compressive plastic strain, As a new folding cycle starts at « = a, in Fig. 6, the point B
travels outside, across the original tube radius, and settles down at its final location outside
the tube radius R,. Corresponding stress trajectories of the point B in the present rigid-
plastic material idealization and also for a more realistic strain hardening material are
drawn in Fig. 12, It is difficult to take into account the effect of strain-hardening in a
rigorous way in the present computational model. It is recognized that this effect will change
(generally smooth out) the load-deflection history and introduce a small correction to the
value of the mean crushing force. In the present theory the effect of work-hardening is
accounted for in an approximate manncr through the constant but elevated magnitude of
the flow stress a,. The flow stress can be related to the average magnitude of the strain

ta) o (b} ]

! ’ #‘ E ‘L’y )
—00

Fig. 12. A typical loading path of a material point of a cylinder in (a) a rigid-perfectly plastic
material and (b) an elastic-plastic work-hardening material.
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attained in the inside or outside lobes. In the case of symmetric folding with m = 0.5, the

average hoop strain equals
H h
w = = 0.443 [ —.
f = 3R, = 0 3R, (56)

For example, in a thick tube with Ry/h = 10, the average compressive or tensile strain
reaches 10%.

The effect of strain reversal has not been predicted in any of the existing models of
progressive crushing of tubes.

8. INITIATION OF THE FOLDING PROCESS

The formation of the first few folds in the undeformed tube requires a separate
consideration. A simplified model with straight elements will suffice for explaining the
concept if the edge of the tube is prevented from sliding, for example by friction, then the
geometrically compatible model of the transition zone should consist of three segments, as
shown in Fig. 13. Because the first lobe usually forms outside, the length of the additional
segment is taken to be 2H(1 —m). In general, the three-segment model represents a two-
degrees-of-freedom system. It is reasonable to assume that the first two segments are inclined
by the same angle to the horizontal line. It is straightforward to derive formulae for the
instantaneous crushing force, following the procedure explained in Section 4. The force-
deflection relation will start at infinity and gradually diminish until first contact occurs at
a crush distance cqual to 6y = 2HQR —m). Thus, in symmetric folding the distance between
the first two peaks is equal to 3H. Subscquent peaks are positioned at 27 intervals. Again,
the above theoretical result is fully confirmed by experiments on circular tubes and muiti-
cornered prismatic columns.

The magnitude of the first peak is governed by elastic-plastic shell buckling and must
be determined from separate considerations.

9. CONCLUSIONS

A new model of the progressive crushing of tubes was developed in which the active
zone of plastic deformation contains two Superfolding Elements. The deformation process
of each material point within the shell is characterized by strain reversal. The new model
captures with great realism several effects unaccounted for in all previous analytical models
of plastic folding. These include description of a softening, followed by a stiffening phase,

Fig. 13. A three-clement model! of the initiation of the folding process.
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alternating lower and higher peaks. unequal distance between subsequent peaks, and a
reduced crush distance.

Accurate formulae were also derived for the optimum length of the plastic folding
wave and the mean crushing force. in terms of a radius to thickness parameter and an
average flow stress of the material. The validity of these formulae was checked against
experimental data over a range of radius to thickness ratios showing a very good agreement.
The influence of other effects such as work hardening of the material, thickness variation
and alternative definition of the hoop strain rate were also discussed.

The history of the crushing force was calculated over a full deformation cycle. It was
shown that the plot of the crushing force, normalized with respect to the mean crushing
force is independent of the geometrical parameters of the shell and depends only on the
eccentricity parameter.

The present concept of folding over two active elements can be easily extended to cover
multi-corner prismatic columns. A geometry of the transition zone of such columns has
already been constructed as depicted in Fig. 14 showing subsequent deformation states of
the two-clement model (compare with Fig. 5). The necessary calculations will be performed
in a future continuation of this research.
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APPENDIX A

The expressions for w(s) and (s) in the deforming regions are given by

w(s) = scos x—=2H cos 1,

]...onAC.

Wis) = —=ssinax

w(s) = scos f§ ]
...onCD. (Al)

W(s) = —ssinx %
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The functions entering the right-hand side of egn (27) are

sin x
It ——
f _! Vv [—(cos x—m)?
Jtr = n -
n sin x(cos x —m)
I B e ——
J I=(cos x—m)*
sin x
f: =

sin x(cos x—m)
COS X+ ——m——

V' | —(cos x—m)*

APPENDIX B
siny |—cosx
x 2
ﬂ=sin[f I—cosﬂa'
B B
& &
Ey = —s |r do+ —s|r: dé.
™ J-\m-‘H~ rdo Lmz H* r:dé

(A2)

where ¢ is a current angular coordinate of a gencric point on the arc ABCD, measured from the horizontal

position :
I 4 # .
5= [1 cos 2 —sin 1] — /—‘ {B cos f—sin f].
on AB
. " .
R = — [ alpsing—1+cos ),
2l
on BC
Iy . .
R =~ - 4 [1 =2 cos x+cos ¢ —2xsin a+ $ sin @],
on CD
Hp . .
R = e [l =2 cos i +cos ¢ —2ff sin f# + ¢ sin ),
on DE

R=— II‘I Hlpsinp—1 +cos p},

Ey = |4+,
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